skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Espinoza, C M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.The radio pulsar PSR J0742−2822 is known to exhibit rapid changes between different pulse profile states that correlate with changes in its spin-down rate. However, the connection between these variations and the glitch activity of the pulsar remains unclear. Aims.We aim to study the evolution of the pulse profile and spin-down rate of PSR J0742−2822 in the period MJD 58810–60149 (November 2019 to July 2023), which includes the glitch on MJD 59839 (September 2022). In particular, we looked for pulse profile or spin-down changes associated with the 2022 glitch. Methods.We observed PSR J0742−2822 with a high cadence from the Argentine Institute of Radioastronomy (IAR) between November 2019 and July 2023. We used standard timing tools to characterise the times of arrival of the pulses and to study the pulsar rotation and, particularly, the oscillations ofν̇. We also studied the evolution of the pulse profile. For both of them, we compared their behaviour before and after the 2022 glitch. Results.With respect toν̇, we find that oscillations diminished in amplitude after the glitch. We find four different components contributing to the pre-glitchν̇oscillations, and only one component after the glitch. With regard to the emission, we find the pulse profile has two main peaks. We detect an increase in theW50of the total pulse profile of ∼12% after the glitch and we find the amplitude of the trailing peak increased with respect to the amplitude of the leading one after the glitch. Conclusions.We find significant changes in the pulse profile and the spin-down rate of PSR J0742−2822 after its 2022 glitch. These results suggest that there is a strong coupling between the internal superfluid of the neutron star and its magnetosphere, and that pulse profile changes may be led by this coupling instead of being led purely by magnetospheric effects. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  3. Abstract Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. 
    more » « less
  4. Abstract We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86–97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode-driven spin-down in PSR J0537–6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation. 
    more » « less
  5. null (Ed.)